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Abstract

Two dimensional electromagnetic particle-in-cell simulations in a magnetized, homo-
geneous, collisionless electron-proton plasma demonstrate the forward cascade of whistler
turbulence. The simulations represent decaying turbulence, in which an initial, narrowband
spectrum of fluctuations at wavenumbers ke¢/w, ~ 0.1 cascades toward increased damping
at ke/w, ~ 1.0, where ¢/w, is the electron inertial length. The turbulence displays mag-
netic energy spectra that are relatively steep functions of wavenumber and are anisotropic
with more energy in directions relatively perpendicular to the background magnetic field
B, = xB, than at the same wavenumbers parallel to B,. In the weak turbulence regime,
the primary new results of the simulations are: 1) Magnetic spectra of the cascading fluc-
tuations become more anisotropic with increasing fluctuation energy; 2) the wavevector
dependence of the three magnetic energy ratios, [6B;|*/|6B|* with j = .y, z, show good
agreement with linear dispersion theory for whistler fluctuations; 3) the magnetic com-
pressibility summed over the cascading modes satisfies 0.3 < |6B,|?/|6BJ* < 0.6; and 4)
the turbulence heats electrons in directions both parallel and perpendicular to B,, with

stronger heating in the parallel direction.

I. INTRODUCTION

Solar wind measurements yield fluctuating magnetic energy spectra which usually
are power law in the observed frequency f. The spectral indices are frequently measured
to be about —5/3 [1,2] at f < 0.1 Hz. Kolmogorov theory predicts [6v|?> o k73/% in
isotropic neutral fluid turbulence. Because of this power-law similarity, low frequency

magnetohydrodynamic (MHD) turbulence in the solar wind has been called the "inertial

* Current address: STE Laboratory, Nagoya University, Nagoya, Aichi 464-8601 Japan

1



range”. However, in contrast to Kolmogorov turbulence, both solar wind observations [3,4]

and numerical computations [5,6] show MHD turbulence to be strongly anisotropic.

In the range 0.2 Hz < f < 0.5 Hz, solar wind measurements near 1 AU often show
a spectral breakpoint, a distinct change to power-law spectra that are steeper than those
of the inertial range [1,4,7]. Such high-frequency spectra are sometimes called the "dissipa-
tion range,” again by analogy with neutral fluid turbulence. However, theoretical models
predict that either Landau or cyclotron damping should lead to spectra with a strong cutoft
rather than to the observed power law behavior [8]. The more likely explanation for these
steeper power-law spectra is that the fluctuations are weakly damped dispersive waves [9],
and recent observations [7] support this view. The character of such spectra is not well

understood, so we use the term ”short-wavelength turbulence” to denote this regime.

Several different scenarios have been put forward to explain the properties of short-
wavelength turbulence. One possibility is that the plasma physics of this regime is asso-
ciated with fundamentally nonlinear modes and nonlinear processes [7,10]. An alternate
viewpoint is based upon the assumption of weak turbulence, which uses linear dispersion

theory to describe the real frequencies and damping rates of the fluctuations.

Within the weak turbulence approximation, there is a current controversy about
the identity of the principal constituent of short-wavelength turbulence in the solar wind.
In one scenario [11], compressive modes are regarded as damped in the collisionless in-
ertial range, but long-wavelength Alfvénic turbulence cascades down to the scale of the
ion gyroradius, where the fluctuations are subject to ion Landau damping and the spec-
tral breakpoint ensues. The remaining fluctuation energy continues to cascade to shorter
wavelengths as kinetic Alfvén waves, relatively incompressible modes which propagate with
wavevector k strongly oblique to the background magnetic field, B,, and at frequencies be-
low €2, the proton cyclotron frequency. These fluctuations finally are completely damped
via the electron Landau resonance at wavelengths of the order of the electron gyroradius.
Both observational [4, 12] and computational [13] arguments have been advanced in favor

of this interpretation.

In a second scenario [9], cascading left-hand polarized Alfvénic fluctuations are sub-
ject to proton cyclotron damping at kjc/w, > 1 [14,15]. Here ¢/w, is the proton inertial
length and || and L denote directions respectively parallel and perpendicular to B,. In this
scenario, the spectral breakpoint corresponds approximately to kc/w, ~ 1 [16,17]; in agree-
ment with the first scenario, the only Alfvénic modes which may contribute to turbulence
at shorter wavelengths are kinetic Alfvén waves at k| substantially greater than k). This
scenario differs from the first, however, in that it admits right-hand polarized magnetosonic
fluctuations at quasi-parallel propagation as weakly damped for 8, < 1 and kc/w, < 1
[9]. Thus these fluctuations also contribute to the inertial range cascade, Because they

are not damped at the ion inertial wavelengths, these fluctuations cascade to ke/w, > 1
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where they become dispersive whistlers [18] with steeper power-law wavenumber spectra
[1]. This cascading whistler turbulence ultimately dissipates via electron cyclotron and/or
Landau damping at kA, ~ 1, where A, is ¢/w,, the electron inertial length.

In the framework of the second scenario, we here use particle-in-cell simulations to ex-
amine properties of whistler turbulence. Turbulent-like whistler fluctuations are observed
in the solar wind [19, 20], and are a likely source of electron scattering in that medium
[21-23], but the physics of such turbulence is not fully understood. Electron magnetohy-
drodynamic (EMHD) models, in which the ions are assumed to be stationary and electrons
are represented as a fluid, yield energy spectra [6B|? ~ k~7/% in both two-dimensional [24,
25] and three-dimensional [26, 27] simulations over kA, < 1. Furthermore, such models
show that whistler turbulence in magnetized plasmas is anisotropic, evolving to a state
in which there is more magnetic fluctuation energy at wavenumbers relatively perpendic-
ular to B, than at parallel wavenumbers [25, 27]. EMHD theory [28] also predicts the
development of a similar anisotropy in whistler turbulence.

However, a kinetic approach is necessary to provide a complete description of whistler
turbulence in collisionless plasmas. Particle-in-cell simulations, which represent both elec-
trons and ions as super-particles, capture not only the wave-wave interactions represented
by fluid descriptions such as EMHD, but also the wave-particle interactions such as Lan-
dau and cyclotron damping which are the ultimate dissipation mechanisms of cascading
whistlers. The limitations of the PIC simulation method are not due to any analytic model
approximations, but rather are due to limits on particle number, cell size, and computing
time due to constrained computing resources. Reference 29 described the first particle-
in-cell simulation to demonstrate cascading whistler turbulence. In this computation an
initial narrowband spectrum of relatively long wavelength whistlers was prescribed, and
the subsequent response of the fields and plasma was computed to |§2.|t = 447. The result-
ing turbulent spectrum was anisotropic in the same sense as predicted by EMHD models,
but also showed that damping of the turbulence led to heating of the electron velocity
distribution in the directions parallel and antiparallel to B,. This manuscript elaborates
upon that initial computation, describing results from an ensemble of whistler turbulence
simulations which have been run to longer times, specifically, |£2.|t = 2011.

Our simulations show that whistler turbulence exhibits a significant magnetic com-
pressibility, which we define as
_ 0By (k)

Recent measurements demonstrate that short-wavelength turbulence has greater magnetic
compressibility than inertial range fluctuations [7, 30, 31]. Oblique whistlers have substan-
tially larger magnetic compressibilities than kinetic Alfvén waves, implying that the former

mode is the more likely constituent of short wavelength turbulence in the solar wind.
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II. SIMULATION MODEL AND PARAMETERS

As in Reference 29, we used a 2D3V, fully relativistic, collisionless electromagnetic
particle-in-cell code modified from the TRISTAN code [32]. Here "2D” and ”3V” mean
that we consider plasma behavior in two spatial dimensions (z, y) but full three-dimensional
velocity space (vg,vy,v.). This code solves Faraday’s and Ampere’s equations for the
electric and the magnetic field, and solves the equations of motion for all electron and
proton super-particles. The electric current is obtained from the motion of the charged
particles and fed back into Ampere’s equation. We use an electron-proton plasma with
periodic boundary conditions for the super-particles and the electromagnetic fields on both
z and y boundaries. The number of grids for our simulations is L, x L, = 1024 x 1024.
The electron-proton pairs are uniformly distributed with the number of super-particles per
cell N. = N, = 64. The subscripts "e” and ”p” represent electron and proton species. The
time step 6t for our computations is 0.05/w. where w, is the electron plasma frequency
and the grid spacing A is 0.1A.. Here B, = xB,. The initial physical dimensionless
parameters are the same as in Reference 29: the mass ratio m,/m. = 1836, the temperature
ratio T,,/T. = 1, the ratio of the electron plasma and the electron cyclotron frequency
we/|Qe| = 2.236, and the electron plasma beta 3, = 0.1. We assume a relatively hot
plasma with electron thermal speed v, /¢ = 0.1, where ¢ is the speed of light.

We impose 42 right-hand polarized whistler waves at ¢ = 0. Initial wavenumbers par-
allel to B, are kA, = +£0.0613, £0.1227, and £0.184, whereas perpendicular wavenumbers
k, are the six values for k, and k, = 0. The frequencies are derived from the linear disper-
sion relation for magnetosonic-whistler fluctuations in a collisionless plasma with the same
parameters as shown above. Each wave has an equal fluctuating magnetic energy at ¢ = 0.
Given the initial magnetic fluctuations 6B,,, the initial 0E,, and 6J,, satisfy Faraday’s and
Ampere’s equations, where the subscript "n” is a mode number from 1 to 42 for the initial
fluctuations. We neglect the electrostatic and particle density contributions to the initial
fluctuations. We argue that neglecting these small contributions is not a concern because
the calculations should adjust the initial fluctuations to self-consistent fluctuations within

a few electron plasma periods. We define 6, the angle of mode propagation, by k-B, = kB,
cos(6).

III. SIMULATION RESULTS

We have done three simulations in which the only initial parameter which is var-
ied is the initial fluctuation energy ep = Ei221 |6Bn(t = 0)|*/B2, where |6B,|* =
E]‘:x vz |6B; ,|?. The three simulations, denoted as Run I, Run II, and Run III, have
eg = 0.1, 0.05, and 0.02, respectively. This section shows results from these three sim-

ulations, placing emphasis on the properties of the wavenumber spectra, the spectral
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anisotropy, and the magnetic compressibility in the cascaded turbulence. We also ana-
lyze electron scattering by the turbulent fluctuations.

Magnetic energy spectra. Figure 1 shows the magnetic fluctuation energy spectra
16B(ky, ky)|? /B2 at |Q|t = 2011 for all three simulations. One-dimensional reduced spec-
tra labeled as 7a” are obtained from the full two-dimensional spectra labeled as ”b” by
integrating on the other direction; e.g., [6B(k; )|* = Z¢, [6B(ky, ky)|?. The two dimensional
spectra are plotted as contours in (k,, k,) space. Magnetic fluctuation energy transfer ap-
pears in wavenumbers |kyA.| > 0.184 and |kyA.| > 0.184. In Run I, as in Reference 29,
the cascaded magnetic fluctuations approximately satisfy a power law dependence as a
function of both k, and k,; that is, in wavenumbers parallel and perpendicular to B,,
respectively. At smaller eg, the spectra do not show a clear power law dependence.

We define o, and ay by [6B(k;)|* = C’kj_aj for j = x,y. Then at the end of Run I,
ay =4.5and a, =9.0. Plots of reduced spectra at various times during the simulation (not
shown here) demonstrate that the perpendicular spectrum does not undergo significant
change (e.g., for the same initial parameters, o, = 4.6 at |Q.|t = 447.0 in Reference
29). However, |B(k,)|*> becomes steeper with time increasing over 400 < |Q.|t < 2000
(ap = 6.8 at |Q.|t = 447.0 in Reference 29), suggesting that electron cyclotron damping is
dissipating fluctuations at relatively large values of k,.

Spectral anisotropies. The two-dimensional spectra in all three simulations are clearly
anisotropic with more energy at wavenumbers relatively perpendicular to B, than at paral-
lel wavenumbers. To quantify this anisotropy, we follow Reference 5 and define the spectral
anisotropy angle 65 by

_ Zkk§|(5B(k$,ky)|2 2
7T Skk2[6B (ks Fy )

2

tan

An isotropic spectrum corresponds to tan®? g = 1.0. The wavenumber range of the sum-
mations is over the cascaded fluctuations, 0.30 < |kA.| < 3.0.

Figure 2 shows (a) the total magnetic energy density and (b) the spectral anisotropy
for the cascaded fluctuations as functions of time. The cascaded magnetic energy is larger
at larger ep. This is because the energy cascade rate is a function of fluctuation amplitude.
Both the magnetic energy and the spectral anisotropy increase at early times and decrease
at late times in all three simulations.

Figure 3 illustrates tan® fp as a function of the instantaneous cascading magnetic
energy density. In each simulation the early-time points correspond to relatively isotropic,
relatively weak turbulence. As more energy cascades into the range kA, > 0.3, there are
increases in both the energy density and the spectral anisotropy (as in Figure 2), but at
later times both quantities gradually decrease. Even though the anisotropy is relatively
scattered in Figure 3 at the larger fluctuating magnetic energies of Run I, it is evident that

there is a positive correlation between the two. We conclude that, in the limit of weak
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turbulence (|6B|?/B2 << 1), the spectral anisotropy of whistler turbulence increases with

the local fluctuation energy density.

Magnetic compressibilities. Magnetic energy ratios [6B;|*/|6B|? for j = .y, z can be
directly calculated from linear dispersion theory, so that they may be useful in the identifi-
cation of constituent modes in weak turbulence. Linear dispersion theory for homogeneous,
Maxwellian plasmas typically assumes a two-dimensional wavevector [e.g. Reference 33],
corresponding directly to the geometry of our two-dimensional simulations. Note that the
magnetic energy ratio |§B,|?/|6BJ? is equal to the magnetic compressibility defined by
Equation (1).

Figure 4 compares simulation results averaged over all times for Run I and linear
theory predictions for the three magnetic energy ratios of whistler fluctuations at ke/w, ~
0.3, 0.5 and 1.0. Figure 4 shows that the simulation results agree with linear theory for
whistler fluctuations for most values of # and all three wavenumbers. Magnetic ratios
averaged over Runs II and IIT (not shown here) also agree with the linear theory predic-
tions, so that the cascaded magnetic fluctuations may be identified as whistlers. These
results show not only that the magnetic compressibility of whistler fluctuations increases
as propagation becomes more oblique to B,, but also suggests that linear theory provides

a useful description of these small-amplitude, short-wavelength fluctuations.

We have also computed the total C), that is, the magnetic compressibility summed
over all the cascading wavenumbers. We find that, for all three runs, there are no discern-
able trends of this quantity as a function of either time or |§B|?/B?, with the parametric

range 0.3 < C) < 0.6.

FElectron scattering. Figure 5 shows time histories of (a) the parallel electron ki-
netic energy Ej pin = mevg’e/Q, (b) the perpendicular electron kinetic energy E | jin =
Eme(vz’e + vz’e)/ﬁl, and (c) the ratio of E| i, and E) p;,. These kinetic energies are
summed over all electrons, and are normalized to the background magnetic field energy
integrated over the simulation box. The parallel kinetic energies increase more rapidly at
early times; however, their growth tends to be weak at late times. On the other hand, the
perpendicular kinetic energies increase relatively uniformly in time. Overall, the electrons
gain more energy at larger initial fluctuation energies. The ratio of the perpendicular
and parallel electron kinetic energy shows that larger initial fluctuating magnetic energies
provide greater energy gains of electrons which are preferentially heated in the parallel
direction.

Figure 6 illustrates differences between f.(v,, vy, |Qc|t = 2011) and f.(vy, vy, |Q|t =
0) normalized to f.(0,0,0) for Run I, Run II, and Run III. All three runs indicate parallel
heating of electrons by Landau resonance as in Reference 29. But there is also evidence of
perpendicular heating especially at larger initial amplitudes, as shown in Figure 5. Note

that at late times, growth of the parallel energy becomes weak whereas the perpendicular
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kinetic energy continues to increase. Figure 6 shows contours of color plots approximately
correspond to curves of constant kinetic energy (v2 + vz ~ constant ), a likely signature of

pitch angle scattering at the electron cyclotron resonance.

IV. INTERPRETATION

The agreement between linear theory and the simulations for the magnetic energy
ratios indicates that weak whistler turbulence may well be described as a weakly coupled
collection of linear normal modes. In this framework, we offer an interpretation of our
simulation results.

An important question is: Is the spectral anisotropy of whistler turbulence in our
simulations due to nonlinear cascade processes, or to preferential collisionless damping at
parallel propagation? The EMHD model results described earlier do not include collision-
less dissipation, and indicate that the perpendicular anisotropy should be due to nonlinear
wave-wave interactions. However, electron cyclotron damping preferentially damps fluctu-
ations at parallel propagation and could be an alternate source of this anisotropy.

To address this question, we return to linear dispersion theory [33] and in Figure
7 plot the damping rate for whistler fluctuations in an electron-proton plasma of g, =
0.10. Figure 7Ta plots the damping rate as a function of wavenumber, and illustrates the
difference between electron cyclotron damping and electron Landau damping. The former
is the only collisionless damping at # = 0°, and is essentially zero at kjc/w. < 0.7 but has
a sudden onset at about kjjc/w. = 0.8. In contrast, electron Landau damping, which arises
only at 6 > 0°, has no clear onset, but gradually increases with increasing wavenumber
across the full range of wavenumbers in our simulations. Figure 7b shows the damping
rate as a function of 6, demonstrating that Landau damping yields the largest value of
|7/ | in the range 50° < 6 < 60°.

For our simulations which run to ||t ~ 2000, we assume 7/|Q.| = -0.005 which
corresponds to appreciable damping. Electron cyclotron damping reaches this level of
dissipation at kjc/w. ~ 0.85, whereas at § = 60° electron Landau damping attains this
magnitude of damping at &k c/w, ~ 0.45. Thus the cascading whistler turbulence in our
simulations should reach a strong damping condition at oblique propagation well before
it attains dissipation in k). This is consistent with the results of Figure 5 and Figure 6,
which show that electron heating in v which is associated with the Landau resonance at
oblique propagation is stronger than electron scattering toward perpendicular velocities
which is due to the cyclotron resonance which is primarily a function of k). If damping
were the dominant factor in shaping the spectral anisotropy, we would expect an anisotropy
opposite to that which results from our simulations. Thus we conclude that the primary
factors in shaping the anisotropy of the magnetic fluctuations are the nonlinear wave-wave

interactions which drive the spectral cascade.

7



To interpret our simulation results, we calculate scaling relations using a model
similar to those discussed in References 24, 27, and 28. We consider the interaction of
whistler wave packets with parallel widths Iy = 27 /k) where the constituent modes each
satisfy the approximate whistler dispersion equation w, ~ k||kcz|Qe|/wz. The wave packet
interaction time 7, is determined by fluctuation properties at propagation parallel to B,,

SO

For an eddy of scale length [ the turnover time is 7cgqy =~ [/6v. where the denominator is
the fluctuating electron velocity from the EMHD model. Then
27 w? B,

€

92| k22 |oB|

Teddy =2

Following the usual assumption of weak incoherent interactions between eddies, the time

scale for the cascade of turbulent fluctuation energy is

2
_ 7—eddy
Teascade =
Tw

For Case I, consider whistlers with kj << k1. Then, as in Eq. (70) of Reference 28,

2 w?
wlkl) o~ — <
T ( J_) |Qe| k”kJ_Cz
and the perpendicular cascade time is
27 k||w2 B?
cascaae k ~ = . 3
reosentd RS 0 Ty e 5B Ok )P ¥

In Case II, consider interacting whistler wave packets with & >> k1. Then

™ w2

mulh) = ] kﬁ;

and it follows that the parallel cascade time is

2 2
4 w? B

~ 4
0.1 122 5B ) ®)

Tcascade(kn)

For the cascading power spectra at kyc/w. > 0.40 illustrated in Figure 1, Equations
(3) and (4) yield |Q.|Tcascade > 10°. This is much longer than our simulation times of

||t ~ 2000. The implication is that our simulations are in an intermediate, evolving
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state, rather than a late-time quasi-steady condition. This is consistent with the results of
Figure 2. which also imply a slow evolution of the turbulence.

We can gain additional insight by comparing Equations (3) and (4). Remember-
ing that k3 >> k| in Case I, we assume that the k) of Case I is the same order as
kj of Case II. Furthermore, from Figure 1, [6B(k1)|* > [6B(k))[?; then it follows that
Teascade(K||) >> Teascade(k1). Thus our model predicts that the cascade rate of whistler
turbulence propagating relatively perpendicular to B, should be much faster than the cas-
cade rate at quasi-parallel propagation, consistent with the anisotropies of our simulations.
Furthermore, since both cascade rates are proportional to the fluctuating magnetic energy
densities, it also follows that the model predictions are consistent with the simulation re-
sults of Figure 3 which shows that the anisotropy of the fluctuation spectra increases with

increasing [6B|%.

V. CONCLUSIONS

We have carried out particle-in-cell simulations of decaying whistler turbulence un-
dergoing a forward cascade in a magnetized, homogeneous, collisionless plasma. The sim-
ulations evolve to turbulence with magnetic spectra that are steeper than in the inertial
range and anisotropic with more energy in directions relatively perpendicular to the back-
ground magnetic field rather than parallel (Figure 1). The sense of the anisotropy is
consistent with that from EMHD simulations in magnetized plasmas [25, 27] and with the
anisotropy predicted by EMHD theory [28].

The primary new results of these computations are: (1) the spectral anisotropy
increases with increasing fluctuation energy, (2) the magnetic energy ratios for all three
components of 6B agree well with the predictions of linear dispersion theory, (3) the total
magnetic compressibility is relatively large, and (4) the magnetic fluctuations heat electrons
in directions both parallel and perpendicular to B,.

The correlation between fluctuation energies and spectral anisotropies suggests a
simple explanation: Increasing turbulence energy more strongly drives the nonlinear pro-
cesses which lead to the perpendicular cascade. As linear dispersion theory predicts that
obliquely propagating whistlers are substantially compressive, and the simulations show
that the whistler cascade preferentially excites such oblique modes, it follows that whistler
turbulence can be strongly compressive. In the whistler-versus-kinetic-Alfvén controversy,
the compressibility of whistler turbulence argues in support of that mode as important in
the solar wind, where short-wavelength turbulence is indeed observed to be substantially
compressive [7, 30, 31].

Figures 1 and 2 indicate that larger fluctuation energy densities correspond to faster
energy cascade rates and smaller values of a,. This anti-correlation between energy cascade

rate and spectral steepness is opposite to the direct correlation between these two quantities
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reported by [1]. This may be due to the difference in wavenumber regimes; the observations
of Reference [1] correspond to 1.0 < kc¢/w, < 10.0, whereas our simulations span 0.10
< ke/w. < 1. Another reason for this apparent discrepancy may be that, as discussed
above, our simulations are in a state of gradual evolution, whereas solar wind turbulence
may have sufficient time to attain a quasi-steady condition; the scaling relations may be
different for dynamic and static systems. Resolution of this apparent difference is a worthy
subject of future research.

In our simulations electron kinetic energy preferentially increases in directions paral-
lel rather than perpendicular to B, and both parallel and perpendicular heating increase
with increasing fluctuation energy (Figure 5). Parallel heating is likely associated with
electron Landau damping which arises only for oblique whistler propagation; in contrast,
perpendicular heating is more likely due to electron cyclotron damping which is most effec-
tive for whistlers at parallel propagation. Because our simulations have shown that whistler
turbulence evolves preferentially to oblique propagation, electrons gain more energy in the
parallel direction.

In our simulations, |6 B.|*/|6B|?* is relatively independent of both initial fluctuating
energy and wavenumber. This may be a property of the two dimensional character of our
simulations. Three dimensional particle-in-cell simulations will be necessary to provide a

full physical picture of whistler turbulence.
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Figure Captions

Figure 1. (Color online) Magnetic fluctuation energy spectra [§B(k)|?/B? at |[Q.|t =
2011 for all three simulations labeled as I, IT, and III. The reduced energy spectra labeled as
7a” are calculated from the two-dimensional energy spectra labeled as ”b” by integrating
on the other direction. Red lines (lower curves in the cascade regime) and blue lines (upper
curves in the cascade regime) with solid circles in the reduced energy spectra correspond

to 3 = x and j = y, respectively.

Figure 2. (Color online) Time histories of quantities summed over the cascading
wavenumber range 0.3 < |ke/w.| < 3.0 for Run I (upper red line), Run II (middle blue
line), and Run IIT (bottom green line). (a) Total magnetic fluctuation energy and (b)

spectral anisotropy tan® ép.

Figure 3. (Color online) Spectral anisotropy as a function of the instantaneous
|6B|?/B? for Run I (red), Run II (blue), and Run III (green). For the black-and-white
version of the figure, the points for Run I correspond to 1073 < |§B|?/B?2, the points for
Run IT correspond to 2 x 107* < [§B|*/B% < 1073, and the points for Run III correspond
to |6B|?/B? < 2 x 107*. Each point corresponds to a summation over the cascading

wavenumber range 0.3 < |ke/w.| < 3.0.

Figure 4. (Color online) Three magnetic energy ratios as functions of 6 for three
ranges of |kc/we| as labeled. Here the green or upper points indicate [6B.|?/|6B|?, the
blue or decreasing points indicate [6B,|*/|éB|?, and the red or increasing points indicate
|6B.|?/|6BJ?, the magnetic compressibility. Run I and linear theory results are shown by
open circles and dashed lines, respectively. The simulation results are averaged over the

whole time of the computation.

Figure 5. (Color online) Time histories of (a) parallel electron kinetic energy Ej| 1y,
(b) perpendicular electron kinetic energy E| j;n, and (c) ratio of the perpendicular and the

parallel electron kinetic energy. These energies are normalized to the background magnetic
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field energy E, g. Here red denotes results from Run I, blue denotes results from Run II,
and green denotes results from Run III. In black-and-white, Run I curves are uppermost
in panels (a) and (b), and lowermost in panel (c¢); Run II curves are in the middle, and

Run IIT curves are lowermost in panels (a) and (b) and uppermost in panel (c).

Figure 6. (Color online) Differences between the late-time and initial electron ve-
locity distributions, that is, [fe(v,, vy, [Qc|t = 2011) = fe(vy, vy, |Qc|t = 0)]/ fe(vy = 0,0, =
0,[Q2|t = 0) for Run I (top), Run IT (middle), and Run III (bottom).

Figure 7. Linear dispersion theory for whistler fluctuations in a homogeneous, col-
lisionless, electron-proton plasma with 3, = 0.10. (a) Whistler damping rates as functions
of wavenumber for four angles of propagation as labeled. (b) Whistler damping rates as

functions of propagation angle for five values of wavenumber as labeled.
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